Impact of Orifice Orientation on a Finite-Span Synthetic Jet Interaction with a Crossflow

 The formation and evolution of flow structures associated with a finite-span synthetic jet issued into a zero-pressure gradient boundary layer were investigated experimentally using stereoscopic particle image velocimetry. A synthetic jet with an aspect ratio of AR = 18 was mounted on a flat plate and its interaction with a free stream, having a velocity of U∞ = 10 m/s (Reδ = 2000) at momentum coefficients of Cμ = 0.08, 0.33, and 0.75, was studied. The effect of the orifice pitch (α = 20∘–90∘) and skew (β = 0∘–90∘) angles on vortex formation as well as the global impact of the synthetic jet on the flow field was explored in detail. It was found that the orifice orientation had a significant impact on the steady and unsteady flow structures. Different orifice skew and pitch angles could result in several types of vortical structures downstream, including: no coherent vortex structure, a single (positive or negative) strong vortex, or a symmetric vortex pair. In all cases, the velocity near the wall was increased; however, cases with higher blockage (i.e., more wall-normal, transverse orifice) resulted in a strong velocity deficit in the free stream where orifices with lower pitch angles yielded in an increase in velocity throughout. The analysis is concluded with a summary of quantitative metrics that allude to flow control effectiveness.
Year
2016
Published In
Physics of Fluids, Volume 28, Issue 3, March 2016.
Authors
Van Buren, T., Leong, C., Whalen, E., and Amitay, M
Back to top